Hydrological Response of Alpine Wetlands to Climate Warming in the Eastern Tibetan Plateau

نویسندگان

  • Wenjiang Zhang
  • Yonghong Yi
  • Kechao Song
  • John S. Kimball
  • Qifeng Lu
چکیده

Alpine wetlands in the Tibetan Plateau (TP) play a crucial role in the regional hydrological cycle due to their strong influence on surface ecohydrological processes; therefore, understanding how TP wetlands respond to climate change is essential for projecting their future condition and potential vulnerability. We investigated the hydrological responses of a large TP wetland complex to recent climate change, by combining multiple satellite observations and in-situ hydro-meteorological records. We found different responses of runoff production to regional warming trends among three basins with similar climate, topography and vegetation cover but different wetland proportions. The basin with larger wetland proportion (40.1%) had a lower mean runoff coefficient (0.173 ̆ 0.006), and also showed increasingly lower runoff level ( ́3.9% year ́1, p = 0.002) than the two adjacent basins. The satellite-based observations showed an increasing trend of annual non-frozen period, especially in the wetland-dominated region (2.64 day ̈ year ́1, p < 0.10), and a strong extension of vegetation growing-season (0.26–0.41 day ̈ year ́1, p < 0.10). Relatively strong increasing trends in evapotranspiration (ET) (~1.00 mm ̈ year ́1, p < 0.01) and the vertical temperature gradient above ground surface (0.043 ̋C ̈ year ́1, p < 0.05) in wetland-dominant areas were documented from satellite-based ET observations and weather station records. These results indicate recent surface drying and runoff reduction of alpine wetlands, and their potential vulnerability to degradation with continued climate warming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition

Zoige wetland, locating on the Tibet Plateau, accounts for 6.2% of organic carbon storage in China. However, the fate of the organic carbon storage in the Zoige wetland remains poorly understood despite the Tibetan Plateau is very sensitive to global climate change. As methane is an important greenhouse gas and methanogenesis is the terminal step in the decomposition of organic matter, understa...

متن کامل

Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai–Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost...

متن کامل

Seasonal Dynamics of Soil Microbial Biomass C and N along an Elevational Gradient on the Eastern Tibetan Plateau, China

Little information is available on the seasonal response of soil microbial biomass to climate warming even though it is very sensitive to climate change. A two-year field experiment was conducted in the subalpine and alpine forests of the eastern Tibetan Plateau, China. The intact soil cores from 3,600 m site were incubated in three elevations (3,000 m, 3,300 m and 3,600 m) to simulate climate ...

متن کامل

Changes in topsoil carbon stock in the Tibetan grasslands

Climate warming is likely inducing carbon loss from soils of northern ecosystems, but little evidence comes from large-scale observations. Here we used data from a repeated soil survey and remote sensing vegetation index to explore changes in soil organic carbon (SOC) stock on the Tibetan Plateau during the past two decades. Our results showed that SOC stock in the top 30 cm depth in alpine gra...

متن کامل

Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season

The vast wetlands on the Tibetan Plateau are expected to be an important natural source of methane (CH4) to the atmosphere. The magnitude, patterns and environmental controls of CH4 emissions on different timescales, especially during the nongrowing season, remain poorly understood, because of technical limitations and the harsh environments. We conducted the first study on year-round CH4 fluxe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016